Some Formulae

$$\begin{array}{ll} \operatorname{Poisson}(\alpha): & p_X(k) = \frac{\alpha^k e^{-\alpha}}{k!}, \ k = 0, 1, 2, \dots, & \operatorname{E}[X] = \alpha, & \operatorname{var}[X] = \alpha \\ \operatorname{Geometric}(p): & p_X(k) = (1-p)^{k-1}p, \ k = 1, 2, \dots, & \operatorname{E}[X] = \frac{1}{p}, & \operatorname{var}[X] = \frac{1-p}{p^2}. \\ \operatorname{Binomial}(n,p): & p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}, 0 \le k \le n, & \operatorname{E}[X] = np, & \operatorname{var}[X] = np(1-p). \\ \operatorname{Exponential}(\lambda): & f_X(x) = \lambda e^{-\lambda x} \text{ and } F_X(x) = 1 - e^{-\lambda x}, & \operatorname{E}[X] = \frac{1}{\lambda}, & \operatorname{var}[X] = \frac{1}{\lambda^2}. \end{array}$$

Moment generating function (mgf): $\phi_X(s) = E[e^{sX}]$. Binomial coefficient:

$$\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\cdots(n-k+1)}{k!}$$

Bayes' Rule: Given a partition B_1, B_2, \ldots, B_n of the sample space and an event A,

$$P[B_j|A] = \frac{P[A|B_j] \cdot P[B_j]}{\sum_{k=1}^{n} P[A|B_k] \cdot P[B_k]}$$

If
$$X \sim \mathcal{N}(m, \sigma^2)$$
 then $f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2\right)$.

If $\mathbf{X} \sim \mathcal{N}(\mathbf{m}, \mathbf{K})$ is a Gaussian random vector with mean vector \mathbf{m} and covariance matrix $\mathbf{K},$ then

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{\exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{K}^{-1}(\mathbf{x} - \mathbf{m})\right\}}{(2\pi)^{n/2} |\det \mathbf{K}|^{1/2}}$$

2-by-2 Matrix Determinant and Inverse

$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \det \mathbf{A} = ad - bc, \quad \mathbf{A}^{-1} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Trigonometric Formulae:

cos(s+t) = cos s cos t - sin s sin t,sin(s+t) = sin s cos t + cos s sin t.

 Φ -table and Q-table over the page

1 Basics

Conditional Probability

$$P[A|B] = \frac{P[A \cap B]}{P[B]}$$

Bayes' Rule

$$P[B|A] = \frac{P[A|B]P[B]}{P[A]}$$

Scaling and Shifting

$$Y = aX + b$$

$$f_Y(y) = \frac{dF_Y(y)}{dy} = \frac{dF_X(\frac{y-b}{a})}{dy} = \frac{1}{a}f_X(\frac{y-b}{a})$$

$$f_Y(y) = \frac{1}{|a|}f_X(\frac{y-b}{a})$$

2 Continuous RV's

3 Transformations

General Transformation

$$f_Y(y) = |det \frac{\delta x}{\delta y}| f_X(g^{-1}(y))$$

Affine Transformation

$$W = AX + b$$

$$f_W(w) = \frac{1}{|det(A)|} f_x(A^{-1}(w - b))$$

Gaussian Transformations

$$W = AX + b$$
$$\mu_W = A\mu_X + b$$
$$C_W = AC_X A^T$$

Polar coordinate transformation

$$\begin{split} X_1 &= R\cos(\theta) \\ X_2 &= R\sin(\theta) \\ \frac{\delta(x_1, x_2)}{\delta(r, \theta)} &= \begin{bmatrix} \cos(\theta) & -r\sin(\theta) \\ \sin(\theta) & r\cos(\theta) \end{bmatrix} \\ Det &= r \\ f_{[R,\Theta]}(r, \theta) &= rf_{[X_1, X_2]}(r\cos(\theta), r\sin(\theta)) \end{split}$$

Box-Muller Transformation

$$\begin{split} X_1 &= \sqrt{V}\cos(\theta) \\ X_2 &= \sqrt{V}\sin(\theta) \\ \frac{\delta(x_1, x_2)}{\delta(r, \theta)} &= \begin{bmatrix} \frac{1}{2}\frac{\cos(\theta)}{\sqrt{v}} & -\sqrt{v}\sin(\theta) \\ \frac{1}{2}\frac{\sin(\theta)}{\sqrt{v}} & \sqrt{v}\cos(\theta) \end{bmatrix} \\ Det &= \frac{1}{2} \\ f_{[V,\Theta]}(v, \theta) &= \frac{1}{2}f_{[X_1, X_2]}(\sqrt{v}\cos(\theta), \sqrt{v}\sin(\theta)) \end{split}$$

4 Mean and Covariance

Correlation Matrix

$$R_X = E[XX^T]$$

Covariance

$$Cov[X,Y] = E[(X - \mu_X)(Y - \mu_Y)]$$

Covariance Matrix

$$C_X = E[(X - \mu_X)(X - \mu_X)^T]$$

= $E[XX^T] - \mu_X \mu_X^T$
= $R_X - \mu_X \mu_X^T$
= $\begin{bmatrix} Var[X] & Cov[X, Y]\\ Cov[X, Y] & Var[Y] \end{bmatrix}$

Correlation between two RV's

E[XY] = E[X]E[Y]For independent RV's

Correlation Coefficient

$$\rho_{X,Y} = \frac{Cov[X,Y]}{\sqrt{Var[X]Var[Y]}}$$
$$= \frac{Cov[X,Y]}{\sigma_X \sigma_Y}$$

Cross-Covariance Matrix

$$C_{XW} = E[(X - \mu_X)(W - \mu_W)^T]$$

Cross-Correlation Matrix

 $E[XW^T]$

Note that the auto-covaraince is same as the covariance matrix, and the auto-correlation matrix is the same as the correlation matrix

5 Conditional RV

Conditional Joint CDF

$$F_{(X,Y)|B}(x,y) = P[X \le x \text{ and } Y \le |B]$$

Conditional Joint PDF

$$f_{(X,Y)|B}(x,y) = \begin{cases} \frac{f_{X,Y}(x,y)}{P[B]} & (x,y) \in B\\ 0 & \text{otherwise} \end{cases}$$

Conditional Joint PMF

$$p_{(X,Y)|B}(x,y) = \begin{cases} \frac{p_{X,Y}(x,y)}{P[B]} & (x,y) \in B\\ 0 & \text{otherwise} \end{cases}$$

Conditional Expected Value Function

$$\begin{split} E[X|Y=y] &= \sum_{x \in S_X} x p_{X|Y}(x|y) \\ E[X|Y=y] &= \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx \\ E[E[X|Y]] &= E[X] \end{split}$$

Handy Fact

E[E[g(X)|Y]] = E[g(X)] if g() is a function

6 Sum of Random Variables

$$X_j \text{ i.i.d}$$

$$\sigma_X^2 = Var[X]$$

$$Z_n = \frac{(X_1 + X_2 + \dots + X_n) - nE[X]}{\sqrt{n}}$$

$$E[Z_n] = 0$$

$$Var[Z_n] = \sigma_X^2$$

$$\lim_{n \to \infty} F_{Z_n}(z) = F_G(z)$$

7 Random Processes

 $R(t_1, t_2) = E[X(t_1)X(t_2)]$

Auto-Covariance Function

$$K(t_1, t_2) = Cov[X(t_1), X(t_2)]$$

= $R(t_1, t_2) - \mu(t_1)\mu(t_2)$

White Noise Process

$$\label{eq:multiplicative} \begin{split} \mu &= 0 \\ R(\tau) &= K \delta(\tau) \text{ where k is a constant} \end{split}$$

For discrete time, and iid zero-mean random sequence is white noise

$$R_X(\tau) = 0, \tau \neq 0$$

 $\sigma_X^2 = R_X(0)$ (Process variance)

In the CT time case, any two X(t) and X(t+ τ) are uncorrelated

A stationary random process has

- Constant mean and constant variance
- Auto correlation function that can be written as a function of just one variable

 $R(\tau) = E[X(t + \tau)X(t)]$ is only dependent on τ For example, i.i.d random sequence, white noise process

A wide-sense stationary process has

- $\bullet\,$ Constant mean
- Auto correlation function that can be written as a function of just the time difference $t_1 - t_2$

$$R(\tau) = E[X(t+\tau)X(t)]$$

4.6	GAUSSIAN RANDOM VARIAB	LES 143

z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$	z	$\Phi(z)$
0.00	0.5000	0.50	0.6915	1.00	0.8413	1.50	0.9332	2.00	0.97725	2.50	0.99379
0.01	0.5040	0.51	0.6950	1.01	0.8438	1.51	0.9345	2.01	0.97778	2.51	0.99396
0.02	0.5080	0.52	0.6985	1.02	0.8461	1.52	0.9357	2.02	0.97831	2.52	0.99413
0.03	0.5120	0.53	0.7019	1.03	0.8485	1.53	0.9370	2.03	0.97882	2.53	0.99430
0.04	0.5160	0.54	0.7054	1.04	0.8508	1.54	0.9382	2.04	0.97932	2.54	0.99446
0.05	0.5199	0.55	0.7088	1.05	0.8531	1.55	0.9394	2.05	0.97982	2.55	0.99461
0.06	0.5239	0.56	0.7123	1.06	0.8554	1.56	0.9406	2.06	0.98030	2.56	0.99477
0.07	0.5279	0.57	0.7157	1.07	0.8577	1.57	0.9418	2.07	0.98077	2.57	0.99492
0.08	0.5319	0.58	0.7190	1.08	0.8599	1.58	0.9429	2.08	0.98124	2.58	0.99506
0.09	0.5359	0.59	0.7224	1.09	0.8621	1.59	0.9441	2.09	0.98169	2.59	0.99520
0.10	0.5398	0.60	0.7257	1.10	0.8643	1.60	0.9452	2.10	0.98214	2.60	0.99534
0.11	0.5438	0.61	0.7291	1.11	0.8665	1.61	0.9463	2.11	0.98257	2.61	0.99547
0.12	0.5478	0.62	0.7324	1.12	0.8686	1.62	0.9474	2.12	0.98300	2.62	0.99560
0.13	0.5517	0.63	0.7357	1.13	0.8708	1.63	0.9484	2.13	0.98341	2.63	0.99573
0.14	0.5557	0.64	0.7389	1.14	0.8729	1.64	0.9495	2.14	0.98382	2.64	0.99585
0.15	0.5596	0.65	0.7422	1.15	0.8749	1.65	0.9505	2.15	0.98422	2.65	0.99598
0.16	0.5636	0.66	0.7454	1.16	0.8770	1.66	0.9515	2.16	0.98461	2.66	0.99609
0.17	0.5675	0.67	0.7486	1.17	0.8790	1.67	0.9525	2.17	0.98500	2.67	0.99621
0.18	0.5714	0.68	0.7517	1.18	0.8810	1.68	0.9535	2.18	0.98537	2.68	0.99632
0.19	0.5753	0.69	0.7549	1.19	0.8830	1.69	0.9545	2.19	0.98574	2.69	0.99643
0.20	0.5793	0.70	0.7580	1.20	0.8849	1.70	0.9554	2.20	0.98610	2.70	0.99653
0.21	0.5832	0.71	0.7611	1.21	0.8869	1.71	0.9564	2.21	0.98645	2.71	0.99664
0.22	0.5871	0.72	0.7642	1.22	0.8888	1.72	0.9573	2.22	0.98679	2.72	0.99674
0.23	0.5910	0.73	0.7673	1.23	0.8907	1.73	0.9582	2.23	0.98713	2.73	0.99683
0.24	0.5948	0.74	0.7704	1.24	0.8925	1.74	0.9591	2.24	0.98745	2.74	0.99693
0.25	0.5987	0.75	0.7734	1.25	0.8944	1.75	0.9599	2.25	0.98778	2.75	0.99702
0.26	0.6026	0.76	0.7764	1.26	0.8962	1.76	0.9608	2.26	0.98809	2.76	0.99711
0.27	0.6064	0.77	0.7794	1.27	0.8980	1.77	0.9616	2.27	0.98840	2.77	0.99720
0.28	0.6103	0.78	0.7823	1.28	0.8997	1.78	0.9625	2.28	0.98870	2.78	0.99728
0.29	0.6141	0.79	0.7852	1.29	0.9015	1.79	0.9633	2.29	0.98899	2.79	0.99736
0.30	0.6179	0.80	0.7881	1.30	0.9032	1.80	0.9641	2.30	0.98928	2.80	0.99744
0.31	0.6217	0.81	0.7910	1.31	0.9049	1.81	0.9649	2.31	0.98956	2.81	0.99752
0.32	0.6255	0.82	0.7939	1.32	0.9066	1.82	0.9656	2.32	0.98983	2.82	0.99760
0.33	0.6293	0.83	0.7967	1.33	0.9082	1.83	0.9664	2.33	0.99010	2.83	0.99767
0.34	0.6331	0.84	0.7995	1.34	0.9099	1.84	0.9671	2.34	0.99036	2.84	0.99774
0.35	0.6368	0.85	0.8023	1.35	0.9115	1.85	0.9678	2.35	0.99061	2.85	0.99781
0.36	0.6406	0.86	0.8051	1.36	0.9131	1.86	0.9686	2.36	0.99086	2.86	0.99788
0.37	0.6443	0.87	0.8078	1.37	0.9147	1.87	0.9693	2.37	0.99111	2.87	0.99795
0.38	0.6480	0.88	0.8106	1.38	0.9162	1.88	0.9699	2.38	0.99134	2.88	0.99801
0.39	0.6517	0.89	0.8133	1.39	0.9177	1.89	0.9706	2.39	0.99158	2.89	0.99807
0.40	0.6554	0.90	0.8159	1.40	0.9192	1.90	0.9713	2.40	0.99180	2.90	0.99813
0.41	0.0591	0.91	0.8185	1.41	0.9207	1.91	0.9719	2.41	0.99202	2.91	0.99819
0.42	0.0028	0.92	0.8212	1.42	0.9222	1.92	0.9726	2.42	0.099224	2.92	0.99825
0.43	0.0004	0.93	0.8238	1.43	0.9230	1.93	0.9732	2.43	0.99245	2.93	0.99831
0.44	0.0700	0.94	0.8204	1.44	0.9201	1.94	0.9738	2.44	0.99200	2.94	0.99030
0.40	0.0730	0.90	0.0209	1.40	0.9205	1.90	0.9744	2.40	0.99200	2.90	0.00946
0.40	0.0112	0.90	0.0310	1.40	0.9219	1.90	0.9750	2.40	0.99309	2.90	0.99840
0.47	0.0000	0.91	0.0340	1 / 2	0.9292	1.97	0.9100	2.41	0.99324	2.51	0.99001
0.40	0.0044	0.90	0.0000	1 /0	0.0000	1.90	0.0767	2.40	0.33343	2.90	0.00861
0.40	0.0019	0.33	0.0003	1.43	0.2013	1.33	0.3101	4.43	0.93001	4.93	0.93001

Table 4.2 The standard normal CDF $\Phi(y)$.

-

į

.

144	CHAPTER 4	CONTINUOUS RANDOM VA	RIABLES
-----	-----------	----------------------	---------

<i>z</i> .	Q(z)	z	Q(z)	z	Q(z)	z	Q(z)	z	Q(z)
3,00	$1.35 \cdot 10^{-3}$	3.40	$3.37 \cdot 10^{-4}$	3.80	$7.23 \cdot 10^{-5}$	4.20	$1.33 \cdot 10^{-5}$	4.60	$2.11 \cdot 10^{-6}$
3.01	$1.31 \cdot 10^{-3}$	3.41	$3.25 \cdot 10^{-4}$	3.81	$6.95 \cdot 10^{-5}$	4.21	$1.28 \cdot 10^{-5}$	4.61	$2.01 \cdot 10^{-6}$
3.02	$1.26 \cdot 10^{-3}$	3.42	$3.13 \cdot 10^{-4}$	3.82	$6.67 \cdot 10^{-5}$	4.22	$1.22 \cdot 10^{-5}$	4.62	$1.92 \cdot 10^{-6}$
3.03	$1.22 \cdot 10^{-3}$	3.43	$3.02 \cdot 10^{-4}$	3.83	$6.41 \cdot 10^{-5}$	4.23	$1.17 \cdot 10^{-5}$	4.63	$1.83 \cdot 10^{-6}$
3.04	$1.18 \cdot 10^{-3}$	3.44	$2.91 \cdot 10^{-4}$	3.84	$6.15 \cdot 10^{-5}$	4.24	$1.12 \cdot 10^{-5}$	4.64	$1.74 \cdot 10^{-6}$
3.05	$1.14 \cdot 10^{-3}$	3.45	$2.80 \cdot 10^{-4}$	3.85	$5.91 \cdot 10^{-5}$	4.25	$1.07 \cdot 10^{-5}$	4.65	$1.66 \cdot 10^{-6}$
3.06	$1.11 \cdot 10^{-3}$.3.46	$2.70 \cdot 10^{-4}$	3.86	$5.67 \cdot 10^{-5}$	4.26	$1.02 \cdot 10^{-5}$	4.66	$1.58 \cdot 10^{-6}$
3.07	$1.07 \cdot 10^{-3}$	3.47	$2.60 \cdot 10^{-4}$	3.87	$5.44 \cdot 10^{-5}$	4.27	$9.77 \cdot 10^{-6}$	4.67	$1.51 \cdot 10^{-6}$
3.08	$1.04 \cdot 10^{-3}$	3.48	$2.51 \cdot 10^{-4}$	3.88	$5.22 \cdot 10^{-5}$	4.28	$9.34 \cdot 10^{-6}$	4.68	$1.43 \cdot 10^{-6}$
3.09	$1.00 \cdot 10^{-3}$	3.49	$2.42 \cdot 10^{-4}$	3.89	$5.01 \cdot 10^{-5}$	4.29	$8.93 \cdot 10^{-6}$	4.69	$1.37 \cdot 10^{-6}$
3.10	$9.68 \cdot 10^{-4}$	3.50	$2.33 \cdot 10^{-4}$	3.90	$4.81 \cdot 10^{-5}$	4.30	$8.54 \cdot 10^{-6}$	4.70	$1.30 \cdot 10^{-6}$
3.11	$9.35 \cdot 10^{-4}$	3.51	$2.24 \cdot 10^{-4}$	3.91	$4.61 \cdot 10^{-5}$	4.31	$8.16 \cdot 10^{-6}$	4.71	$1.24 \cdot 10^{-6}$
3.12	$9.04 \cdot 10^{-4}$	3.52	$2.16 \cdot 10^{-4}$	3.92	$4.43 \cdot 10^{-5}$	4.32	$7.80 \cdot 10^{-6}$	4.72	$1.18 \cdot 10^{-6}$
3.13	$8.74 \cdot 10^{-4}$	3.53	$2.08 \cdot 10^{-4}$	3.93	$4.25 \cdot 10^{-5}$	4.33	$7.46 \cdot 10^{-6}$	4.73	$1.12 \cdot 10^{-6}$
3.14	$8.45 \cdot 10^{-4}$	3.54	$2.00 \cdot 10^{-4}$	3.94	$4.07 \cdot 10^{-5}$	4.34	$7.12 \cdot 10^{-6}$	4.74	$1.07 \cdot 10^{-6}$
3.15	$8.16 \cdot 10^{-4}$	3.55	$1.93 \cdot 10^{-4}$	3.95	$3.91 \cdot 10^{-5}$	4.35	$6.81 \cdot 10^{-6}$	4.75	$1.02 \cdot 10^{-6}$
3.16	$7.89 \cdot 10^{-4}$	3.56	$1.85 \cdot 10^{-4}$	3.96	$3.75 \cdot 10^{-5}$	4.36	$6.50 \cdot 10^{-6}$	4.76	$9.68 \cdot 10^{-7}$
3.17	$7.62 \cdot 10^{-4}$	3.57	$1.78 \cdot 10^{-4}$	3.97	$3.59 \cdot 10^{-5}$	4.37	$6.21 \cdot 10^{-6}$	4.77	$9.21 \cdot 10^{-7}$
3.18	$7.36 \cdot 10^{-4}$	3.58	$1.72 \cdot 10^{-4}$	3.98	$3.45 \cdot 10^{-5}$	4.38	$5.93 \cdot 10^{-6}$	4.78	$8.76 \cdot 10^{-7}$
3.19	$7.11 \cdot 10^{-4}$	3.59	$1.65 \cdot 10^{-4}$	3.99	$3.30 \cdot 10^{-5}$	4.39	$5.67 \cdot 10^{-6}$	4.79	$8.34 \cdot 10^{-7}$
3.20	$6.87 \cdot 10^{-4}$	3.60	$1.59 \cdot 10^{-4}$	4.00	$3.17 \cdot 10^{-5}$	4.40	$5.41 \cdot 10^{-6}$	4.80	$7.93 \cdot 10^{-7}$
3.21	$6.64 \cdot 10^{-4}$	3.61	$1.53 \cdot 10^{-4}$	4.01	$3.04 \cdot 10^{-5}$	4.41	$5.17 \cdot 10^{-6}$	4.81	$7.55 \cdot 10^{-7}$
3.22	$6.41 \cdot 10^{-4}$	3.62	$1.47 \cdot 10^{-4}$	4.02	$2.91 \cdot 10^{-5}$	4.42	$4.94 \cdot 10^{-6}$	4.82	$7.18 \cdot 10^{-7}$
3.23	$6.19 \cdot 10^{-4}$	3.63	$1.42 \cdot 10^{-4}$	4.03	$2.79 \cdot 10^{-5}$	4.43	$4.71 \cdot 10^{-6}$	4.83	$6.83 \cdot 10^{-7}$
3.24	$5.98 \cdot 10^{-4}$	3.64	$1.36 \cdot 10^{-4}$	4.04	$2.67 \cdot 10^{-5}$	4.44	$4.50 \cdot 10^{-6}$	4.84	$6.49 \cdot 10^{-7}$
3.25	$5.77 \cdot 10^{-4}$	3.65	$1.31 \cdot 10^{-4}$	4.05	$2.56 \cdot 10^{-5}$	4.45	$4.29 \cdot 10^{-6}$	4.85	$6.17 \cdot 10^{-7}$
3.26	$5.57 \cdot 10^{-4}$	3.66	$1.26 \cdot 10^{-4}$	4.06	$2.45 \cdot 10^{-5}$	4.46	$4.10 \cdot 10^{-6}$	4.86	$5.87 \cdot 10^{-7}$
3.27	5.38.10-4	3.67	$1.21 \cdot 10^{-4}$	4.07	$2.35 \cdot 10^{-5}$	4.47	$3.91 \cdot 10^{-6}$	4.87	$5.58 \cdot 10^{-7}$
3.28	$5.19 \cdot 10^{-4}$	3.68	$1.17 \cdot 10^{-4}$	4.08	2.25.10-5	4.48	$3.73 \cdot 10^{-6}$	4.88	$5.30 \cdot 10^{-7}$
3.29	$5.01 \cdot 10^{-4}$	3.69	1.12:10-4	4.09	$2.16 \cdot 10^{-5}$	4.49	$3.56 \cdot 10^{-6}$	4.89	$5.04 \cdot 10^{-7}$
3.30	4.83.10	3.70	1.08.10-4	4.10	$2.07 \cdot 10^{-5}$	4.50	$3.40 \cdot 10^{-6}$	4.90	4.79.10-7
3.31	4.66.10	3.71	1.04.10	4.11	1.98.10-5	4.51	3.24.10-0	4.91	$4.55 \cdot 10^{-4}$
3.32	4.50.10	3.72	9.96.10-5	4.12	1.89.10-5	4.52	3.09.10-6	4.92	4.33.10-7
3.33	4.34.10	3.73	9.57.10-5	4.13	1.81.10-5	4.53	2.95.10-6	4.93	4.11.10-7
3.34	4.19.10	3.74	9.20.10	4.14	$1.74 \cdot 10^{-5}$	4.54	2.81.10-0	4.94	$3.91 \cdot 10^{-7}$
3.35	4.04.10	3.75	8.84.10	4.15	$1.66 \cdot 10^{-5}$	4.55	$2.68 \cdot 10^{-6}$	4.95	3.71.10-7
3.30	3.90.10 ~	3.76	8.50.10	4.16	1.59.10	4.56	$2.56 \cdot 10^{-6}$	4.96	3.52.10-7
2.30	3.10.10 - 4	3.11	0.10·10 7 94 10-5	4.17	$1.52 \cdot 10^{-5}$	4.57	2.44.10	4.97	3.35.10
3.30	2 40 10 - 4	3.18 2.70	7 52 10-5	4.18	1.46.10	4.58	2.32.10	4.98	3.18.10
3.39	3.49.10	3.79	1.53.10	4.19	1.39.10-3	4.59	2.22.10	4.99	3.02.10 '

Table 4.3 The standard normal complementary CDF Q(z).